Saturday, November 28, 2015

Scientists have discovered a material that could create quantum optical computers

Scientists have discovered a material that could create quantum optical computers
Just when you thought data couldn't get any faster.

When people talk about the next-generation of computers, they're usually referring to one of two things: quantum computers – devices that will have exponentially greater processing power thanks to the addition of quantum superposition to the binary code – and optical computers, which will beam data at the speed of light without generating all the heat and wasted energy of traditional electronic computers.
Both of those have the power to revolutionise computing as we know it, and now scientists at the University of Technology, Sydney have discovered a material that has the potential to combine both of those abilities in one ridiculously powerful computer of the future. Just hold on for a second while we freak out over here.
The material is layered hexagonal boron nitride, which is a bit of a mouthful, but all you really need to know about it is that it's only one atom thick – just like graphene – and it has the ability to emit a single pulse of quantum light on demand at room temperature, making it ideal to help build a quantum optical computer chip.
Until now, room-temperature quantum emitters had only worked in a chunky, 3D material such as diamonds, which were never going to be easy to integrate onto computer chips. 
"This material – layered hexagonal boron nitride (boron and nitrogen atoms that are arranged in a honeycomb structure) – is rather unique," said one of the researchers, Mike Ford. "It is atomically thin and is traditionally used as a lubricant; however upon careful processing we discovered that it can emit quantised pulses of light – single photons that can carry information.
"That’s important because one of the big goals is to make optical computer chips that can operate based on light rather than electrons, therefore operating much faster with less heat generation," he added.
So how does a pulse of light work with quantum computing? In a traditional computer system, photons – particles of light – can be used to store information by being in either vertical or horizontal polarisation.
But they can also be turned into quantum bits (or qubits) by being put into superposition – a unique quantum state where they're in both vertical and horizontal polarisation at the same time. That's a big deal for security, and also processing power.
"You can create very secure communication systems using single photons,"explained team member Igor Aharonovich. "Each photon can be employed as a qubit (quantum bit, similarly to standard electronic bits), but because one cannot eavesdrop on single photons, the information is secure."
Best of all, the material just happens to also be cheap and easy to make, which means that it could be easily scaled up.
"This material is very easy to fabricate," said PhD student Trong Toan Tran. "It’s a much more viable option because it can be used at room temperature; it’s cheap, sustainable and is available in large quantities."
"Ultimately we want to build a 'plug and play' device that can generate single photons on demand, which will be used as a first prototype source for scalable quantum technologies that will pave the way to quantum computing with hexagonal boron nitride," he added.
The research has been published in Nature NanotechnologyNow all we really want to know is whether the new material would also work with Li-Fi. If that's the case, our future is pretty much set.

Tuesday, November 24, 2015

Li-Fi has just been tested in the real world, and it's 100 times faster than Wi-Fi

Li-Fi has just been tested in the real world, and it's 100 times faster than Wi-Fi


Sorry, Wi-Fi. We had some good times together. 







Expect to hear a whole lot more about Li-Fi - a wireless technology that transmits high-speed data using visible light communication (VLC) - in the coming months. With scientists achieving speeds of 224 gigabits per second in the lab using Li-Fi earlier this year, the potential for this technology to change everything about the way we use the Internet is huge.
And now, scientists have taken Li-Fi out of the lab for the first time, trialling it in offices and industrial environments in Tallinn, Estonia, reporting that they can achieve data transmission at 1 GB per second - that's 100 times faster than current average Wi-Fi speeds.
"We are doing a few pilot projects within different industries where we can utilise the VLC (visible light communication) technology," Deepak Solanki, CEO of Estonian tech company, Velmenni, told IBTimes UK
"Currently we have designed a smart lighting solution for an industrial environment where the data communication is done through light. We are also doing a pilot project with a private client where we are setting up a Li-Fi network to access the Internet in their office space.”
Li-Fi was invented by Harald Haas from the University of Edinburgh, Scotlandback in 2011, when he demonstrated for the first time that by flickering the light from a single LED, he could transmit far more data than a cellular tower. Think back to that lab-based record of 224 gigabits per second - that's 18 movies of 1.5 GB each being downloaded every single second.
The technology uses Visible Light Communication (VLC), a medium that uses visible light between 400 and 800 terahertz (THz). It works basically like an incredibly advanced form of Morse code - just like switching a torch on and off according to a certain pattern can relay a secret message, flicking an LED on and off at extreme speeds can be used to write and transmit things in binary code. 
And while you might be worried about how all that flickering in an office environment would drive you crazy, don’t worry - we’re talking LEDs that can be switched on and off at speeds imperceptible to the naked eye. 
lifi environment
The benefits of Li-Fi over Wi-Fi, other than potentially much faster speeds, is that because light cannot pass through walls, it makes it a whole lot more secure, and as Anthony Cuthbertson points out at IBTimes UK, this also means there's less interference between devices.
While Cuthbertson says Li-Fi will probably not completely replace Wi-Fi in the coming decades, the two technologies could be used together to achieve more efficient and secure networks.
Our homes, offices, and industry buildings have already been fitted with infrastructure to provide Wi-Fi, and ripping all of this out to replace it with Li-Fi technology isn’t particularly feasible, so the idea is to retrofit the devices we have right now to work with Li-Fi technology.
Research teams around the world are working on just that. Li-Fi expertsreported for the The Conversation last month that Haas and his team have launched PureLiFi, a company that offers a plug-and-play application for secure wireless Internet access with a capacity of 11.5 MB per second, which is comparable to first generation Wi-Fi. And French tech company Oledcomm is in the process of installing its own Li-Fi technology in local hospitals.
If applications like these and the Velmenni trial in Estonia prove successful, we could achieve the dream outlined by Haas in his 2011 TED talk below - everyone gaining access to the Internet via LED light bulbs in their home.
"All we need to do is fit a small microchip to every potential illumination device and this would then combine two basic functionalities: illumination and wireless data transmission," Haas said. "In the future we will not only have 14 billion light bulbs, we may have 14 billion Li-Fis deployed worldwide for a cleaner, greener, and even brighter future."